\(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^3} \, dx\) [1120]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 250 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {7 (33 A+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {(63 A+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {(63 A+13 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{6 a^3 d}+\frac {7 (33 A+7 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{30 a^3 d}-\frac {(A+C) \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (6 A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(63 A+13 C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \]

[Out]

7/10*(33*A+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d-1/
6*(63*A+13*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+7/30
*(33*A+7*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/a^3/d-1/5*(A+C)*cos(d*x+c)^(9/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^3-2/15*
(6*A+C)*cos(d*x+c)^(7/2)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^2-1/10*(63*A+13*C)*cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a^3
+a^3*cos(d*x+c))-1/6*(63*A+13*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a^3/d

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4199, 3121, 3056, 2827, 2715, 2720, 2719} \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=-\frac {(63 A+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {7 (33 A+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {(63 A+13 C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{10 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {7 (33 A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{30 a^3 d}-\frac {(63 A+13 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{6 a^3 d}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {9}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}-\frac {2 (6 A+C) \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{15 a d (a \cos (c+d x)+a)^2} \]

[In]

Int[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

(7*(33*A + 7*C)*EllipticE[(c + d*x)/2, 2])/(10*a^3*d) - ((63*A + 13*C)*EllipticF[(c + d*x)/2, 2])/(6*a^3*d) -
((63*A + 13*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(6*a^3*d) + (7*(33*A + 7*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(
30*a^3*d) - ((A + C)*Cos[c + d*x]^(9/2)*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) - (2*(6*A + C)*Cos[c + d*x]
^(7/2)*Sin[c + d*x])/(15*a*d*(a + a*Cos[c + d*x])^2) - ((63*A + 13*C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(10*d*(
a^3 + a^3*Cos[c + d*x]))

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4199

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\cos ^{\frac {7}{2}}(c+d x) \left (C+A \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx \\ & = -\frac {(A+C) \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\int \frac {\cos ^{\frac {7}{2}}(c+d x) \left (-\frac {1}{2} a (9 A-C)+\frac {5}{2} a (3 A+C) \cos (c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx}{5 a^2} \\ & = -\frac {(A+C) \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (6 A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {\int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (-7 a^2 (6 A+C)+\frac {5}{2} a^2 (21 A+5 C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{15 a^4} \\ & = -\frac {(A+C) \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (6 A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(63 A+13 C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {\int \cos ^{\frac {3}{2}}(c+d x) \left (-\frac {15}{4} a^3 (63 A+13 C)+\frac {35}{4} a^3 (33 A+7 C) \cos (c+d x)\right ) \, dx}{15 a^6} \\ & = -\frac {(A+C) \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (6 A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(63 A+13 C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {(7 (33 A+7 C)) \int \cos ^{\frac {5}{2}}(c+d x) \, dx}{12 a^3}-\frac {(63 A+13 C) \int \cos ^{\frac {3}{2}}(c+d x) \, dx}{4 a^3} \\ & = -\frac {(63 A+13 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{6 a^3 d}+\frac {7 (33 A+7 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{30 a^3 d}-\frac {(A+C) \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (6 A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(63 A+13 C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {(7 (33 A+7 C)) \int \sqrt {\cos (c+d x)} \, dx}{20 a^3}-\frac {(63 A+13 C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{12 a^3} \\ & = \frac {7 (33 A+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {(63 A+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {(63 A+13 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{6 a^3 d}+\frac {7 (33 A+7 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{30 a^3 d}-\frac {(A+C) \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (6 A+C) \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(63 A+13 C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 11.37 (sec) , antiderivative size = 1271, normalized size of antiderivative = 5.08 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {84 A \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (c+d x) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^3}+\frac {52 C \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (c+d x) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^3}+\frac {\cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {8 (99 A+29 C+132 A \cos (c)+20 C \cos (c)) \csc (c)}{5 d}-\frac {32 A \cos (d x) \sin (c)}{d}+\frac {16 A \cos (2 d x) \sin (2 c)}{5 d}-\frac {4 \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{5 d}+\frac {16 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (12 A \sin \left (\frac {d x}{2}\right )+7 C \sin \left (\frac {d x}{2}\right )\right )}{15 d}-\frac {8 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (99 A \sin \left (\frac {d x}{2}\right )+29 C \sin \left (\frac {d x}{2}\right )\right )}{5 d}-\frac {32 A \cos (c) \sin (d x)}{d}+\frac {16 A \cos (2 c) \sin (2 d x)}{5 d}+\frac {16 (12 A+7 C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{15 d}-\frac {4 (A+C) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{5 d}\right )}{\sqrt {\cos (c+d x)} (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^3}-\frac {462 A \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec (c+d x) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^3}-\frac {98 C \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec (c+d x) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^3} \]

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

(84*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]
*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt
[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + A*Cos[2*c
 + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^3) + (52*C*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[
{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[
Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt
[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^3
) + (Cos[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x]^2)*((-8*(99*A + 29*C + 132*A*Cos[c] + 20*C*Cos[c])*Csc[c])/(5*d)
 - (32*A*Cos[d*x]*Sin[c])/d + (16*A*Cos[2*d*x]*Sin[2*c])/(5*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^5*(A*Sin[(d*x)
/2] + C*Sin[(d*x)/2]))/(5*d) + (16*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(12*A*Sin[(d*x)/2] + 7*C*Sin[(d*x)/2]))/(15*d
) - (8*Sec[c/2]*Sec[c/2 + (d*x)/2]*(99*A*Sin[(d*x)/2] + 29*C*Sin[(d*x)/2]))/(5*d) - (32*A*Cos[c]*Sin[d*x])/d +
 (16*A*Cos[2*c]*Sin[2*d*x])/(5*d) + (16*(12*A + 7*C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(15*d) - (4*(A + C)*Sec[c/
2 + (d*x)/2]^4*Tan[c/2])/(5*d)))/(Sqrt[Cos[c + d*x]]*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^3) -
(462*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Sec[c/2]*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -
1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]
]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[
c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1
 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d*(A + 2*C
 + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^3) - (98*C*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Sec[c/2]*Sec[c + d*x]*(A
+ C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan
[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + A
rcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2
] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + Arc
Tan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^3)

Maple [A] (verified)

Time = 13.04 (sec) , antiderivative size = 479, normalized size of antiderivative = 1.92

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (192 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}-864 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}-228 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-630 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-1386 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-348 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-130 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-294 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+1590 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+578 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-744 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-264 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+57 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+37 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} C -3 A -3 C \right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(479\)

[In]

int(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(192*A*cos(1/2*d*x+1/2*c)^12-864*A*cos(1/2*d*x+1
/2*c)^10-228*A*cos(1/2*d*x+1/2*c)^8-630*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellip
ticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5-1386*A*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-348*C*cos(1/2*d*x+1/2*c)^8-130*C*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1
/2*c)^5-294*C*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(co
s(1/2*d*x+1/2*c),2^(1/2))+1590*A*cos(1/2*d*x+1/2*c)^6+578*C*cos(1/2*d*x+1/2*c)^6-744*A*cos(1/2*d*x+1/2*c)^4-26
4*C*cos(1/2*d*x+1/2*c)^4+57*A*cos(1/2*d*x+1/2*c)^2+37*cos(1/2*d*x+1/2*c)^2*C-3*A-3*C)/a^3/cos(1/2*d*x+1/2*c)^5
/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 489, normalized size of antiderivative = 1.96 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {2 \, {\left (12 \, A \cos \left (d x + c\right )^{4} - 24 \, A \cos \left (d x + c\right )^{3} - 3 \, {\left (147 \, A + 29 \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, {\left (357 \, A + 73 \, C\right )} \cos \left (d x + c\right ) - 315 \, A - 65 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (-63 i \, A - 13 i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-63 i \, A - 13 i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-63 i \, A - 13 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-63 i \, A - 13 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (63 i \, A + 13 i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (63 i \, A + 13 i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (63 i \, A + 13 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (63 i \, A + 13 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 \, {\left (\sqrt {2} {\left (-33 i \, A - 7 i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-33 i \, A - 7 i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-33 i \, A - 7 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-33 i \, A - 7 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 \, {\left (\sqrt {2} {\left (33 i \, A + 7 i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (33 i \, A + 7 i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (33 i \, A + 7 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (33 i \, A + 7 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/60*(2*(12*A*cos(d*x + c)^4 - 24*A*cos(d*x + c)^3 - 3*(147*A + 29*C)*cos(d*x + c)^2 - 2*(357*A + 73*C)*cos(d*
x + c) - 315*A - 65*C)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*(sqrt(2)*(-63*I*A - 13*I*C)*cos(d*x + c)^3 + 3*sqrt
(2)*(-63*I*A - 13*I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(-63*I*A - 13*I*C)*cos(d*x + c) + sqrt(2)*(-63*I*A - 13*I*C)
)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*(sqrt(2)*(63*I*A + 13*I*C)*cos(d*x + c)^3 + 3*
sqrt(2)*(63*I*A + 13*I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(63*I*A + 13*I*C)*cos(d*x + c) + sqrt(2)*(63*I*A + 13*I*C
))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*(sqrt(2)*(-33*I*A - 7*I*C)*cos(d*x + c)^3 +
3*sqrt(2)*(-33*I*A - 7*I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(-33*I*A - 7*I*C)*cos(d*x + c) + sqrt(2)*(-33*I*A - 7*I
*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*(sqrt(2)*(33*I*A +
 7*I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(33*I*A + 7*I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(33*I*A + 7*I*C)*cos(d*x + c) +
 sqrt(2)*(33*I*A + 7*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/
(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^3, x)

Giac [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3} \,d x \]

[In]

int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^3,x)

[Out]

int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^3, x)